The healthcare economy is changing rapidly – from increased consolidation to the rise of consumerism in care, healthcare organizations face a market that requires a holistic understanding of their enterprise (from clinical to claims data) to succeed. To stay competitive and deliver the best quality of care and value, providers should think like payers and payers like providers. As such, strengthening integrated care remains a hurdle for organizations to overcome as they seek to improve clinical quality, reduce operational costs and support care management. To achieve these goals, healthcare systems must be able to have access to data not just within their own organization, but from outside sources – which is often siloed.
A HFMA Health Care 2020 report on consolidation points out that to succeed in an increasingly competitive marketplace, healthcare organizations are investing in data analytics capabilities to help them understand their patient – and entire business – better. While investing in analytics is an integral key to success, an overall best-practice strategy must be developed to make data actionable. Here are five best practices that should be adopted to initiate an analytics strategy:
- Identify enterprise champions – To ensure buy-in from key internal stakeholders, leadership and process changes must occur. Change to the entire organization’s attitude on data governance must come from the top and trickle down to the bottom.
- Find value in existing data – As new payment models are adopted, healthcare providers need to design a technical infrastructure that can integrate payer, health system and medical group data within an enterprise healthcare delivery system to create value. Organizations should leverage their core data set and claims data, but also pull in existing ancillary data to have a better understanding of their organization.
- Create data-driven culture – Establishing an enterprise analytics department ensures that the entire business is standardizing and handling data consistently, but also encourages the new analytics department to champion a holistic approach towards data management. Champions should include representatives across all departments, from clinical to claims teams.
- Outline and developing manageable goals – Instead of tackling all problems at once, start small. Is the organization focusing on obtaining a streamline, single view of their entire business? By setting a goal with real, manageable next steps, all stakeholders can quickly perceive value in an enterprise initiative.
- Train, train, train – Repeated trainings and regular communications across the enterprise ensure long-term initiative success. By holding teams accountable, while empowering them with resources to succeed, data sharing efforts across the enterprise are bound to improve.
Changing goals and evolving organizational structures require players in the healthcare industry to pivot quickly. Whether it’s to meet increasing consumer demands or to better align on value-based initiatives, organizations will need to rely even more on data to achieve their goals. When organizations embrace analytics, and have a go-to data analytics strategy, the procurement and actionable next steps will come naturally.
To learn more on how to take action with your data, check out our latest whitepaper here. If you are interested in ways we can help you on your analytics journey, learn more about our enterprise analytics options.
Get our take on industry trends
Why managed Medicaid/Medicare health plans need analytics to improve outcomes
Managed care organizations that provide healthcare services to Medicare/Medicaid members are dedicated to improving the health and wellness of these underserved populations, especially those living in rural areas.
Read on...Using consumer analytics to steer health-related decisions
Companies tap into what people like to eat and drink, how we purchase consumables, where we like to shop, what shows we might like to stream, whether we vote, and so on. If you have ever created a profile on a streaming application (think Netflix or Amazon), you will receive recommended books, movies and other items just as soon as you start surfing.
Read on...Run: Bringing Data Science into your Organization
In this three-part series, we’ve been detailing a tiered approach to introducing and incorporating data science into your organization. In Part One: Crawl and Part Two: Walk, we discussed how to get started from scratch and start building out a dedicated data science program. Today, we’ll dive into the third and final phase to see how to grow quality, centralize governance, incorporate user feedback, and more.
Read on...Walk: Bringing Data Science into your Organization
In this three-part series, we’re exploring a tiered approach to introducing and incorporating data science into your organization. In Part One: Crawl, we discussed how to get started from scratch. Today in Part Two: Walk, we’ll address issues that may emerge and how to overcome them, how to build out a dedicated data science team, and more.
Read on...