Boost Data Transparency with APCDs

All-payer claims databases (APCDs) would benefit from mapping morbidity rates to the data resulting in pricing transparency, as well as pricing, efficiency and performance assessments that can be compared among providers. Mapping morbidity rates using publicly available data would create a clear idea of healthcare effectiveness and enrich the data, enabling patterns of care and value to emerge and in result, improve the future of healthcare. Here's a preview of Virginia Long and David Mould's piece on iHealthBeat that went live today:

All-payer claims databases (APCDs) that are in place in several states and about to be implemented in many more, are intended to make provider and hospital costs transparent.  The readily available data within the APCDs includes claims data for medical, mental health, pharmacy, and dental procedures across providers.  Access to this data enables analysis, analysis that can be done to make important comparisons such as price for services or performance measures at the level of physician or hospital—across a state.  Thus, the APCDs can provide powerful and illuminating information, from tracking state healthcare spending to guiding patient/consumer choices.

Augmenting APCD data

Although APCDs can provide useful information on cost and value of healthcare within a state, augmenting the claims data with publically available morbidity data would provide users with a more holistic dataset where cost information is directly tied to clinical outcomes.  Mapping disease morbidity information to APCDs would allow effectiveness of treatment to be assessed, alongside cost and quality measures.  Treatment costs relative to disease burden within distinct locations can be used to pinpoint areas with health disparities, highlighting potential problems or incongruities in access to or quality of care. 

Health and Morbidity Data

Publically available health data is available through many sources.  A few of the major health related data sources are the Center for Disease Control and Prevention (CDC), the Community Health Status Indicators (CHSI), and the County Health Rankings.  The CDC is not just concerned with communicable diseases; they are at the forefront of the fight against chronic diseases that adversely affect health in America.  CDC data on disease are readily available and data maps for social determinants of health have the potential to bring together highly relevant and sometimes overlooked data. The CHSI provides information on health indicators such as tobacco use, diet and activity, alcohol and drug use, to create community profiles.  Measures of health, causes of death, population vulnerability, and access to care, demographics, and risk factors are among the reports available on a county by county basis.  The County Health Rankings & Roadmap program collects data about factors that influence health that includes high school graduation rates, obesity, unemployment, access to healthful foods, air and water quality. County Health Rankings provides information about health outcomes such as length of life and quality of life, as measured by poor health, poor mental health, and low birth weight.

Integration of public datasets with the APCDs

The addition of health factors and morbidity data would create a rich data set. Advanced analysis of the APCDs in conjunction with health and morbidity measurements will highlight interesting, important, or overlooked relationships among claims data, health outcomes, and factors influencing health.  Through exploring and understanding these relationships, all stakeholders in the healthcare system will have a better understanding of how cost, quality, and effectiveness of care intersect.  Literal mapping of these data, by using location based datasets, would enable users of all analytic levels to consume the data visually.

To read more about Virginia Long and David Mould’s thoughts on APCDs, visit the full iHealthBeat post, “Link All-Payer Claims Databases With Other Data To Boost Transparency.”

Posted in

MedeAnalytics

MedeAnalytics is a leader in healthcare analytics, providing innovative solutions that enable measurable impact for healthcare payers and providers. With the most advanced data orchestration in healthcare, payers and providers count on us to deliver actionable insights that improve financial, operational, and clinical outcomes. To date, we’ve helped uncover millions of dollars in savings annually.

Leave a Comment





Get our take on industry trends

Introduction to social risk: What healthcare leaders need to understand

September 27, 2024

‘Social determinants of health’ has been a common phrase for decades now, but the term social risk is much less…

Read on...

AI is your new crystal ball: How predictive analytics can reduce denials

September 23, 2024

The idea of having a crystal ball to better understand what claims will be denied is an awesome concept. But one we can’t rely on. Thankfully, we have predictive analytics to take the place of a crystal ball.

Read on...

3 ways to reduce friction in payer-provider relationships

August 14, 2024

The dynamic between healthcare providers and payers has historically been quite strained. Though both parties are interested in improving the…

Read on...

Position your organization for success under CMS-HCC V28

August 6, 2024

The transition from CMS-HCC V24 to V28 heralds a significant shift in risk adjustment methodologies and emphasizes improved accuracy and…

Read on...