Healthcare providers and payers continually seek methods to enhance patient care and operational efficiency. With the advent of complex data sets in healthcare, there is a pressing need for advanced analytics to not only predict outcomes but also clarify the ‘why’ and ‘how’ behind these predictions. Enter explainable artificial intelligence (xAI)—a transformative methodology revolutionizing healthcare analytics.
A significant hurdle in healthcare analytics has been the opacity of advanced machine learning models, which, while accurate, often need more insight into the factors driving their predictions. This gap in explainability presents challenges for healthcare providers and payers who require clarity to make informed decisions and develop targeted interventions.
xAI: Bridging the gap between data and decision-making
xAI emerges as a solution, offering a robust methodology that retains the predictive power of machine learning while providing transparent and interpretable insights into model predictions. Here’s how xAI stands to support healthcare:
- Transparent feature influence: xAI elucidates the influence of each variable in a model, enabling providers and payers to understand the specific factors affecting healthcare outcomes at the patient, hospital and network levels.
- Strategic resource allocation: By quantifying the impact and direction (e.g., positive or negative) of different features on patient outcomes, xAI helps prioritize interventions and allocate resources more effectively.
- Risk management: xAI aids in identifying patterns and patient characteristics that may indicate higher risks, allowing preemptive actions to improve care and reduce costs.
Methodological innovation
At MedeAnalytics, we are developing xAI models, putting us at the forefront of this analytical revolution. By integrating xAI into healthcare analytics, we can provide a roadmap for payers and providers to:
- Interpret complex data: We simplify the complexity of healthcare data, offering clear insights into patient behaviors and risk factors.
- Customize patient strategies: xAI allows for developing personalized care plans by interpreting the unique impact of variables at patient level.
- Inform policy and practice: The insights from xAI can inform broader healthcare policies, leading to improved patient outcomes and more efficient care delivery.
Real-world impact
The potential of xAI in healthcare is immense, offering a way forward for providers and payers to navigate the complexities of modern healthcare data. As we refine these methods, the implications for cost savings, improved patient outcomes, and the overall elevation of healthcare services are substantial.
Get our take on industry trends
Data visualization: A picture is worth a thousand…healthcare data points?
The amount of data produced daily has grown exponentially with nearly 90% of the world’s data generated in the last two years alone. To ensure we can make sense of this data, analysts must find meaningful ways to present the information to their audiences.
Read on...How did we get here? Hospital analytics and the new normal
I have heard the word “unprecedented” so many times in 2020 that it has lost its significance; many of us have become desensitized to the extraordinary changes in the world this year.
Read on...How to help employer groups plan in a time of uncertainty
Employers and their sponsored health plans are thinking about next year’s benefit designs with a significant challenge not seen before: the effect of the coronavirus pandemic. There are important considerations to take into account before making any decisions about new or existing coverage. Becky Niehus, a director of Product Consulting at MedeAnalytics, explores these new issues and what employers can do to ensure employees are “covered.”
Read on...Healthcare’s return to “normal” after COVID-19: Is it possible?
As providers determine how to get patients to return to facilities for routine disease management and preventive screenings, opportunities are ripe for the application of analytics to triage at the right time to the right setting. Data related to COVID-19 will continue to flow rapidly, but there are possibly more questions than answers now about a return to “normal.”
Read on...