AI is your new crystal ball: How predictive analytics can reduce denials

Wouldn’t it be nice if all you needed to avoid denials was a crystal ball? You could gaze in, examine all the ways that claims could go wrong, and initiate immediate action to avoid issues. Think of the money you could save and the time your staff would get back! In the absence of magic, future-telling apparatuses, advancements in AI can help you answer the question, what can you do to prevent denials? Today on the blog, we’re talking about AI-enabled predictive analytics—your official crystal ball substitute.

Predictive analytics, a subset of advanced analytics, leverages historical data alongside statistical modeling, data mining techniques, and machine learning to forecast future outcomes and identify potential trends based on past patterns. If that sounds like gibberish, don’t worry. Predictive analytics is really just what it sounds: using data to anticipate what may happen in any given scenario.

Data science models have been used across many industries with great success—but healthcare has been slower on the uptake. Though not surprising, the hesitancy to adopt predictive analytics may be hurting providers, particularly when it comes to revenue cycle.  

Cost to collect is one of the largest non-clinical expenses for most hospitals and health systems. A recent report estimated that providers spend $19.7 billion a year managing denied claims for care—a number that will continue to rise if we don’t collectively take steps to strengthen revenue cycle operations.  Predictive analytics can help providers understand where leakage is most prevalent and stratify the “holes” in the process by impact and ‘avoidability.’

With comprehensive insight into their denials landscape surfaced at their fingertips, providers can save time and resources previously dedicated to parsing through seemingly endless claims to extract scraps of information. The ability to correct claims before submitting them to payers can alleviate many of the challenges involved with reworking claims and enable providers to receive cash more quickly, which drives down the cost to collect.

Of course, the use of predictive analytics won’t stop every denial. Some are unavoidable and others unactionable, but avoiding claims that are denied for common reasons will make a measurable impact on overall organizational health.

A few examples of what predictive analytics can help address include:

  • Questions about eligibility and gaps in benefits
  • Omitted patient identification and coverage information
  • Missing or invalid authorizations
  • & more!

Although it would be great to have advanced models tailored to all denials, payer rules and adjudication systems are constantly updated. If you decide to work with a partner like MedeAnalytics to gain predictive capabilities, be sure they have a clear, robust process in place for staying up to date on regulatory developments and can quickly apply necessary changes to their technological systems. We have an entire team of data scientists continually researching and deploying new models to help healthcare organizations reach their clinical and financial goals.

When providers are empowered to use predictive analytics for both systematic and institutional learning, it has an immediate and long-term positive impact on their ability to effectively manage denials and reduce cost to collect. No crystal ball necessary.

Editorial Team

MedeAnalytics is a leader in healthcare analytics, providing innovative solutions that enable measurable impact for healthcare payers and providers. With the most advanced data orchestration in healthcare, payers and providers count on us to deliver actionable insights that improve financial, operational, and clinical outcomes. To date, we’ve helped uncover millions of dollars in savings annually.

Get our take on industry trends

risk-based-approach-featured

Will adopting a risk-based approach with augmented analytics support care gap closure?

February 24, 2023

A common challenge for healthcare systems is how to properly segment its patient populations based on risk profiles and co-morbidities. Doing this well ensures a high quality of care delivery and superior patient outcomes.

Read on...

4 questions healthcare executives are asking about augmented analytics

November 29, 2022

At our annual Impact Summit, I had the privilege to talk about augmented analytics and address questions from healthcare executives—many…

Read on...

Using data analytics to combat the maternal health crisis

November 18, 2022

With most pregnancy-related deaths being considered preventable, why is the United States facing a maternal health crisis? The country’s maternal mortality rate is the highest of any developed nation in the world and more than double the rate of peer countries.

Read on...
Dr. Lyle Berkowitz

Q&A with Dr. Lyle Berkowitz: Diving into the future of AI, analytics and precision medicine

October 21, 2022

Estimated reading time: 4 minutes After an excellent keynote session led by Dr. Lyle Berkowitz at our 2022 Impact Summit…

Read on...