Blog

Posts in "big-data"
  • CHIME Series: Are You Making the Most of Your Analytics Investment?

    July 21, 2017 Editorial Team in Big DataCost Reduction & Process ImprovementEnterprise AnalyticsFeaturedMedeAnalyticsPerformance Management

    This week we are continuing to share our College of Healthcare Information Management Executives (CHIME) survey results with you. The focus is specifically around the question: Do you feel that you have realized the full ROI of your data warehouse and analytics investments? The results were telling – with close to 100 percent responding “no.” The healthcare industry continues to view data and analytics as top priorities to driving change. We have outlined best practices and strategies to ensure healthcare organizations receive the full potential of their IT investments while making strides to maximize value through the improvement of quality care and reduction in costs.

    In partnering with our clients, MedeAnalytics works to ensure that the large hospital investment – both from a cost and organizational perspective – is realized. The key to achieving an overall best-practice strategy is to not only take data to insight but also into action. Below are five steps healthcare organizations can do to get their analytics investment on track: 

    • Identify enterprise champions – They will be the point-people to turn data into change as they will lead the entire organization’s attitude on data governance. Establishing authority will create a trickledown effect ensuring value is tracked and achieved.
    • Find value in existing data – Organizations should leverage their core data set and claims data, but also pull in existing ancillary data to have a better understanding of their organization.
    • Create a data-driven culture – An analytics department ensures that the entire business is standardizing and handling data consistently, but also encourages the new analytics department to champion a holistic approach towards data management.
    • Outline and develop manageable goals – Instead of tackling all problems at once, start small. By setting a goal with real, manageable next steps, the organization can quickly perceive value in an enterprise initiative.
    • Train, train, train – Repeated trainings and regular communications ensure long-term success. By holding teams accountable, while empowering them with resources to succeed, data sharing efforts across the enterprise are bound to improve.

    An investment in analytics is the first step toward becoming a data-driven healthcare organization; however, the real change comes from leadership and education. To learn more about analytics best practices, download our whitepaper here. For success stories, access our case studies here. If you’re looking for guidance on how to make the most of your analytics investment – make sure to contact us: http://medeanalytics.com/company/contact

    Read More

  • CHIME Series: Are Self-Insured Providers the Future of Healthcare?

    July 14, 2017 Editorial Team in Big DataEnterprise AnalyticsFeaturedMedeAnalyticsPayment Reform & Value-Based PurchasingValue-Based Care (VBC)Population Health

    As healthcare’s future continues to be battled on The Hill, we recently conducted a College of Healthcare Information Management Executives (CHIME) survey that outlined several questions around the various data-challenges facing healthcare organizations in the transition to value. This week’s blog focuses on the survey question: With the shift to value-based care, has your health system considered becoming or adopting parts of an integrated healthcare system (i.e., becoming a provider and a payer)? The results show that more than half (61.7 percent) of respondents have considered moving towards this model. As the U.S. healthcare spend continues to rise, with average healthcare costs close to $10,000 and the national level equaling more than 3 trillion, the need to better manage expenses is a top priority. One way to do this is through the cohesion of payers and providers, along with the use of data analytics as a guiding light.

    At MedeAnalytics, we’ve worked with two healthcare organizations who have created an integrated healthcare system and utilized their valuable data resources to create analytics platforms that break down barriers and lead to lower costs and higher quality care.

    Covenant Health: Covenant Health (Covenant), a self-insured hospital, uses data analytics to adopt an innovative approach to population health to drive down costs and engage in preventative care initiatives. Using a data analytics approach they achieved the following:

    1. Identified healthcare utilization to improve care for employees and their families
    2. Designed benefit plans
    3. Reduced overall health spend

    By drawing insights from population health data, they strategically identified at-risk patients and proactively managed their care. Covenant determined that employee healthcare costs were more than 10 percent higher than the general population. Overall, just 9 percent of the highest risk employees were found to be responsible for 40 percent of employee health plan costs. The insights found in the data enabled them to proactively manage their employee population to identify exactly where money was being spent.

    Presbyterian Healthcare Services: Presbyterian Healthcare Services (PHS), is an integrated healthcare provider and payer organization, looking to improve quality and reduce costs. Using data analytics, they strategically differentiated themselves and have added value within their integrated model. To achieve their success, PHS focused on three distinct categories:

    1. Created Value for Key Stakeholders 
    2. Integrated Payer and Provider Analytics
    3. Promoted a Data-Driven Culture 

    PHS achieved ROI in its clinical, operational and financial areas within their enterprise. Additionally, PHS recognized operational efficiencies by replacing seven analytics vendors with MedeAnalytics, reducing redundancies and achieving quick wins with business stakeholders. More so, PHS expects to save millions in 2017 by improving collection for Medicaid encounters and increasing business development revenue.

    To learn more about Covenant’s success, check out their case study here. For insights on PHS’ journey with data analytics, click here. If you’re looking for ways to become an integrated system or want to learn more, reach out to us: http://medeanalytics.com/company/contact.

    Read More

  • Driving Enterprise-Wide Change by Breaking Down Data Silos and Creating a Data-Driven Culture

    June 8, 2017 Editorial Team in Big DataEnterprise AnalyticsFeaturedMedeAnalytics

    This year’s Big Data & Healthcare Analytics Forum brought together payers, providers, government and academia decision-makers who shared their successes and lessons learned from their transition to value-based care. Of the many thought leaders who participated in the discussion, our client, Soyal Momin, Vice President of Data & Analytics at Presbyterian Healthcare Services (PHS), presented his abstract, “Eliminating Data Silos and Driving ROI.”

    As a large integrated healthcare system consisting of eight hospitals, a statewide health plan and a growing multi-specialty medical group, PHS found it increasingly challenging to oversee its entire business from one integrated view. After investing in an enterprise data warehouse (EDW), PHS continued utilizing several reporting tools from different vendors for each of its business lines that created data silos. For PHS to thrive under the value-based care model, the organization knew they needed to balance their costs, utilization, quality, risk and outcomes. During Soyal’s presentation, he outlined how through their partnership with MedeAnalytics they could strategically differentiate themselves and add value within their integrated data analytics model. To achieve this success, PHS focused on three distinct categories:

    • Creating Value for Key Stakeholders – Creating an integrated, enterprise approach, extends meaningful, actionable insights across PHS and to their business users so they’re able to access content, business rules, benchmarks, best-practice analysis and views.
    • Integrating Payer and Provider Analytics – Through an enterprise approach to analytics, PHS has an integrated overview into their provider groups and health plan. The insights are extended across financial, operational and clinical areas throughout the provider-side of the organization. For the health plan, they can analyze payer data for cost and utilization.
    • Promoting a Data-Driven Culture – Data literacy and data democratization is the foundation for creating a data-driven culture. A key component in creating this was tapping data analysts whose sole job is to gather data and analyze it in a meaningful way to generate results. PHS gave their analysts the appropriate training and mentoring to ensure they were developing a consultative skillset that met the needs of their diverse organization.

    PHS has achieved ROI in its clinical, operational and financial areas within their enterprise. Additionally, PHS recognized operational efficiencies by replacing seven analytics vendors with MedeAnalytics, reducing redundancies and achieving quick wins with business stakeholders. More so, PHS expects to save millions in 2017 by improving collection for Medicaid encounters and increasing business development revenue.

    To learn more, visit our enterprise analytics solutions page or download our white paper here.

    Read More

  • Data Democratization at the Heart of Health Datapalooza 2017

    May 10, 2017 Editorial Team in Big DataClinical Data InfrastructureFeaturedMedeAnalyticsMedicare/Medicaid

    The 8th Annual Health Datapalooza conference in Washington D.C. brought together a variety of data advocates who focused on how to harness the power of big data and put it into the hands of the people who benefit from it most: patients and providers. As part of the two-day event, one of our clients – Ian Morris, Clinical Data Interoperability Project Manager for the State of Mississippi, Division of Medicaid – presented as part of a panel titled “Health Systems Reaching Out to Patients and Providers.” During his presentation, Morris shared Medicaid’s experience of modernizing their Medicaid infrastructure and empowering real-time data sharing across all of Mississippi. In addition, Morris outlined lessons learned around interoperability and the roadmap for Medicaid’s interoperability efforts in years to come.

    After the conference came to an end, we connected with Morris to discuss his experience at the event and other key takeaways. Morris shares his highlights below.

    1. As a first-time attendee and presenter at Health Datapalooza, what intrigued you most about the event?

    It was refreshing to hear the patient perspective. A lot of the time when you attend conferences that focus on data and analytics, you don’t get the rich patient narrative. However, Health Datapalooza took the imperative to put democratization of health data at the heart of the event. Empowering the physician and patient to take control of the data is what we’re all striving for, and that’s where organizations like Medicaid fit into the narrative. You need to understand the value of data first, and that’s where we – people such as interoperability managers – come into play. We translate that value, and once it’s understood by the provider, it can be shared externally with the patient.

    2. What was a best practice that you learned from your peers and what do you hope to see at next year’s conference?

    There were many presentations at the event that delved into the importance of collaborating between multiple state systems (i.e. bridging the broader health and human services, mental health and advocacy groups together) all for the greater good – improving patient outcomes via better data sharing. Such intricate collaboration efforts made me think of the initiatives Medicaid plans to embark on in the future. If there is one take away, it’s that statewide collaboration is key to better data sharing practices. My hope for next year’s conference is to have more speaking panels that touch upon just this, especially as it relates to interoperability efforts overall.

    3. Other post-conference highlights that you’d like to share?

    Health Datapalooza was full of energetic and enthusiastic data leaders. From patient advocates, to vendors to hands-on project managers, conference attendees and speakers embraced each other’s lessons and shared challenges of their own. Serving as a microcosm of what we’re all striving for in healthcare, Health Datapalooza reminds us that the sharing and analysis of data has a purpose – and that is ultimately to improve patient outcomes.

    To read more about how Mississippi Division of Medicaid became the first Medicaid Agency to exchange clinical data summaries with their providers, read their story here. To learn more about how to act on your data and ensure quality, cost-effective care for Medicaid beneficiaries, visit our Provider Access solution here.

    Read More

  • Best Practices for an Enterprise Analytics Strategy

    March 31, 2017 Editorial Team in Big DataFeaturedMedeAnalytics

    The healthcare economy is changing rapidly – from increased consolidation to the rise of consumerism in care, healthcare organizations face a market that requires a holistic understanding of their enterprise (from clinical to claims data) to succeed. To stay competitive and deliver the best quality of care and value, providers should think like payers and payers like providers. As such, strengthening integrated care remains a hurdle for organizations to overcome as they seek to improve clinical quality, reduce operational costs and support care management. To achieve these goals, healthcare systems must be able to have access to data not just within their own organization, but from outside sources – which is often siloed.

    A HFMA Health Care 2020 report on consolidation points out that to succeed in an increasingly competitive marketplace, healthcare organizations are investing in data analytics capabilities to help them understand their patient – and entire business – better. While investing in analytics is an integral key to success, an overall best-practice strategy must be developed to make data actionable. Here are five best practices that should be adopted to initiate an analytics strategy: 

    • Identify enterprise champions – To ensure buy-in from key internal stakeholders, leadership and process changes must occur. Change to the entire organization’s attitude on data governance must come from the top and trickle down to the bottom.  
    • Find value in existing data – As new payment models are adopted, healthcare providers need to design a technical infrastructure that can integrate payer, health system and medical group data within an enterprise healthcare delivery system to create value. Organizations should leverage their core data set and claims data, but also pull in existing ancillary data to have a better understanding of their organization.
    • Create data-driven culture – Establishing an enterprise analytics department ensures that the entire business is standardizing and handling data consistently, but also encourages the new analytics department to champion a holistic approach towards data management. Champions should include representatives across all departments, from clinical to claims teams.
    • Outline and developing manageable goals – Instead of tackling all problems at once, start small. Is the organization focusing on obtaining a streamline, single view of their entire business? By setting a goal with real, manageable next steps, all stakeholders can quickly perceive value in an enterprise initiative.
    • Train, train, train – Repeated trainings and regular communications across the enterprise ensure long-term initiative success. By holding teams accountable, while empowering them with resources to succeed, data sharing efforts across the enterprise are bound to improve.

    Changing goals and evolving organizational structures require players in the healthcare industry to pivot quickly. Whether it’s to meet increasing consumer demands or to better align on value-based initiatives, organizations will need to rely even more on data to achieve their goals. When organizations embrace analytics, and have a go-to data analytics strategy, the procurement and actionable next steps will come naturally.

    To learn more on how to take action with your data, check out our latest whitepaper here. If you are interested in ways we can help you on your analytics journey, learn more about our enterprise analytics options.

    Read More